In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

نویسندگان

  • Virginia W. Manner
  • John D. Yeager
  • Brian M. Patterson
  • David J. Walters
  • Jamie A. Stull
  • Nikolaus L. Cordes
  • Darby J. Luscher
  • Kevin C. Henderson
  • Andrew M. Schmalzer
  • Bryce C. Tappan
چکیده

The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی استفاده از پلیمرها و نرم کننده‌های پرانرژی در ساخت مواد منفجره پلاستیکی حاوی HMX

Plastic Bonded Explosives with inert binder despite having good mechanical properties and low sensitivity, because of containing inert materials, have low energy level. So investigations for replacing inert binder system with energetic binder system and high exploding components in the making of these materials are performing. It seems using energetic polymers and materials like Cyclotetramethy...

متن کامل

بررسی عوامل موثر بر خواص مکانیکی پلی‌یورتان‌ها(علمی-ترویجی)

The aim of this research is investigation of mechanical properties regarding the polyurethanes as the binder of plastic bonded explosives. Due to the great effect of mechanical properties on application of these materials, the influence of Isocyanate/Hydroxyl ratio, crosslink density, the type of curing agent, hard segment and temperature on mechanical properties of these materials were investi...

متن کامل

Modeling Static Bruising in Apple Fruits: A Comparative Study, Part II: Finite Element Approach

ABSTRACT- Mechanical damage degrades fruit quality in the chain from production to the consumption. Damage is due to static, impact and vibration loads during processes such as harvesting, transportation, sorting and bulk storage. In the present study finite element (FE) models were used to simulate the process of static bruising for apple fruits by contact of the fruit with a hard surface. Thr...

متن کامل

Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage

The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The pre...

متن کامل

DAMAGE AND PLASTICITY CONSTANTS OF CONVENTIONAL AND HIGH-STRENGTH CONCRETE PART I: STATISTICAL OPTIMIZATION USING GENETIC ALGORITHM

The constitutive relationships presented for concrete modeling are often associated with unknown material constants. These constants are in fact the connectors of mathematical models to experimental results. Experimental determination of these constants is always associated with some difficulties. Their values are usually determined through trial and error procedure, with regard to experimental...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017